Action Recognition and Detection by Combining Motion and Appearance Features

نویسندگان

  • Limin Wang
  • Yu Qiao
  • Xiaoou Tang
چکیده

We present an action recognition and detection system from temporally untrimmed videos by combining motion and appearance features. Motion and appearance are two kinds of complementary cues for human action understanding from video. For motion features, we adopt the Fisher vector representation with improved dense trajectories due to its rich descriptive capacity. For appearance feature, we choose the deep convolutional neural network activations due to its recent success in image based tasks. With this fused feature of iDT and CNN, we train a SVM classifier for each action class in the one-vs-all scheme. We report both the recognition and detection results of our system on Thumos 14 Challenge. From the results, we see that our method rank 4 in the action recognition task and 2 in the action detection task.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Action Change Detection in Video Based on HOG

Background and Objectives: Action recognition, as the processes of labeling an unknown action of a query video, is a challenging problem, due to the event complexity, variations in imaging conditions, and intra- and inter-individual action-variability. A number of solutions proposed to solve action recognition problem. Many of these frameworks suppose that each video sequence includes only one ...

متن کامل

Application of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors

In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the loc...

متن کامل

استفاده از برآورد حالت‌های پویای دست مبتنی بر مدل، برای تقلید عملکرد بازوی انسان توسط ربات با داده‌های کینکت

Pose estimation is a process to identify how a human body and/or individual limbs are configured in a given scene. Hand pose estimation is an important research topic which has a variety of applications in human-computer interaction (HCI) scenarios, such as gesture recognition, animation synthesis and robot control. However, capturing the hand motion is quite a challenging task due to its high ...

متن کامل

Applying mean shift and motion detection approaches to hand tracking in sign language

Hand gesture recognition is very important to communicate in sign language. In this paper, an effective object tracking and hand gesture recognition method is proposed. This method is combination of two well-known approaches, the mean shift and the motion detection algorithm. The mean shift algorithm can track objects based on the color, then when hand passes the face occlusion happens. Several...

متن کامل

Combining motion and appearance cues for anomaly detection

In this paper, we present a novel anomaly detection framework which integrates motion and appearance cues to detect abnormal objects and behaviors in video. For motion anomaly detection, we employ statistical histograms to model the normal motion distributions and propose a notion of “cut-bin” in histograms to distinguish unusual motions. For appearance anomaly detection, we develop a novel sch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014